Effective One Particle Quantum Dynamics of Electrons: a Numerical Study of the Schrödinger-poisson-xα Model∗
نویسنده
چکیده
The Schrödinger-Poisson-Xα (S-P-Xα) model is a “local one particle approximation” of the time dependent Hartree-Fock equations. It describes the time evolution of electrons in a quantum model respecting the Pauli principle in an approximate fashion which yields an effective potential that is the difference of the nonlocal Coulomb potential and the third root of the local density. We sketch the formal derivation, existence and uniqueness analysis of the S-P-Xα model with/without an external potential. In this paper we deal with numerical simulations based on a time-splitting spectral method, which was used and studied recently for the nonlinear Schrödinger (NLS) equation in the semiclassical regime and shows much better spatial and temporal resolution than finite difference methods. Extensive numerical results of position density and Wigner measures in 1d, 2d and 3d for the S-P-Xα model with/without an external potential are presented. These results give an insight to understand the interplay between the nonlocal (“weak”) and the local (“strong”) nonlinearity.
منابع مشابه
Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملA numerical study of the Gaussian beam methods for one-dimensional Schrödinger-Poisson equations
As an important model in quantum semiconductor devices, the Schrödinger-Poisson equations have generated widespread interests in both analysis and numerical simulations in recent years. In this paper, we present Gaussian beam methods for the numerical simulation of the one-dimensional Schrodinger-Poisson equations. The Gaussian beam methods for high frequency waves outperform the geometrical op...
متن کاملA Numerical Simulation Study on the Kinetics of Asphaltene Particle Flocculation in a Two-dimensional Shear Flow
In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence model is proposed to consider the attachment of colliding particles. The changes in mean asph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003